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1. 

The determination of natural frequencies in transverse vibration of isotropic rectangular
plates is a problem that has been extensively studied by several researchers. Leissa’s works
[1, 2] constitute excellent compilations of the pertinent literature. Also, the problem of
vibration of rectangular plates with complicating effects, such as variable thickness,
presence of concentrated masses, elastically restrained edges, etc., has received considerable
treatment [3, 13]. Reference [14] constitutes an excellent survey of the literature concerning
dynamics of plate-type structural elements of composite material. Laura and co-workers
[15–18] have supplied much of the information regarding the use of polynomial expressions
as approximating functions. There is comparatively limited amount of information on the
vibration of anisotropic plates.

The present paper deals with the application of the Rayleigh–Schmidt method for the
determination of the fundamental frequency coefficient, for rectangular anisotropic plates,
[19–22]. The algorithm developed allows the inclusion of analysis of anisotropic,
orthotropic and isotropic materials, presence of a concentrated mass and elastically
restrained edges. The values obtained are accurate from an engineering viewpoint and the
entire algorithm can be implemented on a personal computer. The software constitutes a
useful tool in design work, since vibrating anisotropic plate problems which involve several
complicating effects can be solved.

2.          

– 

The Rayleigh–Schmidt method requires the minimization of the Rayleigh quotient
which for the fundamental natural frequency is given by [17, 18]

v2 =Umax /Tmax (1)

where Umax =Up,max +Ur,max , and where Up,max is the maximum strain energy of
the plate, Ur,max is the maximum strain energy stored in rotational restraints at the
plate edges, and Tmax is the maximum kinetic energy of the mechanical system under
study. The assumed shape functions for using the Rayleigh–Schmidt procedure are
given by

W(x, y)=A1X1(x)Y1(y)+A2X2(x)Y2(y), (2)
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where

X1(x)= s
4

i=0

aixni, Y1(y)= s
4

i=0

a'i yni; X2(x)= s
5

i=0

bixmi, Y2(y)= s
5

i=0

b'i ymi,

(3, 4)

a4 = a'4 =1, n0 =0, n1 =1, n2 =2, n3 =3, b5 = b'5 =1, m0 =0, m1 =1, m2 =2, m3 =3, and
the exponents n4, m4 and m5 are the adjustable parameters. The coefficients ai , bi , a'i and
b'i are obtained from the corresponding boundary conditions. The fact that the natural
boundary conditions need not be satisfied by the chosen co-ordinate functions is a very
important feature of the Rayleigh–Schmidt method, specially when dealing with problems
for which such satisfaction is difficult to achieve. In this case it is possible to replace the
natural boundary conditions by more easily applied conditions. This procedure has been
successfully used in several previous works [15–18] and is also used in the present work.

Minimization of the Rayleigh quotient (1) with respect to each parameter Ai leads to
the necessary conditions

1v2/1Ai =0, i=1, 2. (5)

T 1

Values of fundamental frequency coefficient V00 =
z(rh/D11)v00a2 for a rectangular plate of generalized
orthotropy which supports a concentrated mass at the center.
Edges 1 and 3 are simply supported, 4 is rigidly clamped, and
edge 2 is elastically restrained against rotation R1 =R3 =0,
R4 =a, R2 = r2a/D11, rm is the ratio concentrated mass/plate
mass. The generalized orthotropy is characterized by the
following values: D12/D11 =0·3245569, D22/D11 =0·2130195,
D16/D11 =0·5120546, D26/D11 =0·1694905, D66/D11 =
0·3387559, where the notations follow those of reference [18].
The rotational coefficient used is given by R2 = r2a/D11 and the

aspect ratio is rs= a/b.

V00(rs= a/b)
ZXXXXXXXCXXXXXXXV

R2 rm 0·5 1·0 1·5

a 0 16·69 21·67 30·48
0·1 13·94 18·11 25·47
0·5 9·37 12·19 17·14

10 0 14·74 19·85 28·77
0·1 12·33 16·61 24·07
0·5 8·31 11·20 16·23

1 0 12·27 17·94 27·30
0·1 10·30 15·07 22·92
0·5 6·99 10·20 15·53

0 0 11·55 17·45 26·98
0·1 9·71 14·68 22·68
0·5 6·58 9·96 15·39
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When applying equations (5) in order to minimize Rayleigh quotient (1), one obtains a
homogeneous system of two equations for the two constants A1 and A2. For a non-trivial
solution, the determinant of the coefficient must be zero. One thus obtains a frequency
equation of the type

AV4 +BV2 +C=0. (6)

The frequency coefficients are functions of the parameters ni and mj of the assumed shape
functions. Therefore, it can be written

Vk =Vk (ni , mj ), k=1, 2. (7)

The Rayleigh–Schmidt method requires the minimization of the frequency coefficients with
respect to the exponential parameters ni and mj . This procedure has been performed
numerically.

Table 1 shows results of the fundamental frequency coefficient

V00 =z(rh/D11)v00a2 (8)

for a rectangular plate of generalized orthotropy which supports a concentrated mass at
the center. Edges 1 and 3 are simply supported, 4 is rigidly clamped and edge 2 is elastically
restrained against rotation. The rotational coefficient used is given by R2 = r2a/D11 and the
plate sides relation rs is rs= a/b.

3. 

A general algorithm has been presented to deal with free transverse vibration of
rectangular plates. The Rayleigh–Schmidt method was applied to the problem with a
polynomial expression with adjustable exponents as an approximating function. A
frequency equation was thus derived in a very simple form. The operations of
differentiation and integration needed when substituting expression of W(x, y) in Rayleigh
quotient (1) are quite simple. This feature allows the inclusion of analysis of several
geometric and mechanical characteristics of the system which can be varied without any
difficulty. Thus a close form approximate solution is obtained with all the governing
geometrical and mechanical parameters included. In addition, a great advantage of the
present approach is the fact that the entire algorithm obtained can be easily implemented
in a personal computer. To sum up, it appears that the procedure used yields a convenient
and adequate analytical approach, which allows rapid and inexpensive estimates of the
natural fundamental frequency of rectangular anisotropic plates, which is important
information for design.
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